高中數(shù)學(xué)說課稿
作為一名教師,常常要寫一份優(yōu)秀的說課稿,借助說課稿可以有效提升自己的教學(xué)能力。說課稿應(yīng)該怎么寫呢?以下是小編整理的高中數(shù)學(xué)說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數(shù)學(xué)說課稿1
各位評委、各位老師:大家好!
我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一。教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學(xué)目標定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標,培養(yǎng)學(xué)生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3.教學(xué)重點、難點確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二。教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
三。教學(xué)過程分析:
1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的'另外一種解法(可稱為"三步曲"法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進,分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進一步的提高。
四。課堂意外預(yù)案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到"意外"的問題,我在平時的教學(xué)中重視對"課堂意外預(yù)案"的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預(yù)案".
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
高中數(shù)學(xué)說課稿2
一、地位作用
數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設(shè)計本節(jié)的數(shù)學(xué)思路上:
利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的.教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。
二、教學(xué)目標
知識目標:1)理解等比數(shù)列的概念
2)掌握等比數(shù)列的通項公式
3)并能用公式解決一些實際問題
能力目標:培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運用類比思想、解決分析問題的能力。
三、教學(xué)重點
1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點
2)等比數(shù)列的通項公式的推導(dǎo)及應(yīng)用
四、教學(xué)難點
“等比”的理解及利用通項公式解決一些問題。
五、教學(xué)過程設(shè)計
(一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。
2)觀察以下幾個數(shù)列,回答下面問題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉是等比數(shù)列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
③公比q=1時是什么數(shù)列?
④q>0時數(shù)列遞增嗎?q<0時遞減嗎?
3)怎樣推導(dǎo)等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?
4)等比數(shù)列通項公式與函數(shù)關(guān)系怎樣?
(二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)
這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點內(nèi)容。
通過回答問題(1)(2)給出等比數(shù)列的定義并強調(diào)以下幾點:①定義關(guān)鍵字“第二項起”“常數(shù)”;
②引導(dǎo)學(xué)生用數(shù)學(xué)語言表達定義: =q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。
通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項公式。
法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。
法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。
高中數(shù)學(xué)說課稿3
教學(xué)目標:
。1)至少掌握點到直線的距離公式的一種推導(dǎo)方法,能用公式來求點到直線距離。
。2)培養(yǎng)學(xué)生探究能力和由特殊到一般的研究問題的能力。
。3)認識事物(知識)之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化的思想和綜合應(yīng)用知識分析問題解決問題的能力。
。4)培養(yǎng)學(xué)生團隊合作精神,培養(yǎng)學(xué)生個性品質(zhì),培養(yǎng)學(xué)生勇于探究的科學(xué)精神。
教學(xué)重點:點到直線的距離公式推導(dǎo)及公式的應(yīng)用
教學(xué)難點:點到直線的距離公式的推導(dǎo)
教學(xué)方法:啟發(fā)引導(dǎo)法、討論法
學(xué)習(xí)方法:任務(wù)驅(qū)動下的研究性學(xué)習(xí)
教學(xué)時間:45分鐘
教學(xué)過程:
1、教師提出問題,引發(fā)認知沖突(約5分鐘)
問題:假定在直角坐標系上,已知一個定點P(x0,y0)和一條定直線l:AxByC=0,那么如何求點P到直線l的距離d?請學(xué)生思考并回答。
學(xué)生1:先過點P作直線l的垂線,垂足為Q,則|PQ|就是點P到直線l的距離d;然后用點斜式寫出垂線方程,并與原直線方程聯(lián)立方程組,此方程組的解就是點Q的坐標;最后利用兩點間距離公式求出|PQ|。
接著,教師用投影出示下列5道題(嘗試性題組),請5位學(xué)生上黑板練習(xí)(第(4)題請一位運算能力強的同學(xué),其余學(xué)生在下面自己練習(xí),每做完一題立即講評):
。1)求P(1,2)到直線l:x=3的距離d;(答案:d=2)
。2)求P(x0,y0)到直線l:ByC=0(B≠0)的距離d;(答案:)
。3)求P(x0,y0)到直線l:AxC=0(A≠0)的距離d;(答案:)
。4)求P(6,7)到直線l:3x—4y5=0的距離d;(答案:d=1)
。5)求P(x0,y0)到直線l:AxByC=0(AB≠0)的距離d。
第(1)容易、(2)和(3)題雖然含有字母參數(shù),但由于直線的位置比較特殊,學(xué)生不難得出正確結(jié)論;第(4)題雖然運算量較大,但按照剛才學(xué)生1回答的方法與步驟,也能順利解出正確答案;第(5)題雖然思路清晰,但由于字母參數(shù)過多、運算量太大行不通。學(xué)生們陷入了困境。
2、教師啟發(fā)引導(dǎo),學(xué)生走出困境(約8分鐘)
教師:根據(jù)以上5位學(xué)生的運算結(jié)果,你能得到什么啟示?
學(xué)生2:當直線的位置比較特殊(水平或豎直)時,點到直線的距離容易求得,而當直線是傾斜位置時則較難;含有多個字母時雖然想起來思路很自然,但具體操作起來因計算量很大而無法得出結(jié)果。
教師:那么,練習(xí)(5)有沒有運算量小一點的推導(dǎo)方法呢?我們能不能根據(jù)剛才的第(2)、(3)的啟示,借助水平、豎直情形和平面幾何知識來解決傾斜即一般情況呢?請同學(xué)們思考。
學(xué)生3:能!如圖1,過點P作x、y軸的垂線分別交直線l于S、R,則由三角形面積公式可得
|PQ|=(|PR|·|PS|)/|RS|
教師:|PR|怎么求?|PS|又怎么求?
學(xué)生3:設(shè)R(x1,y0),則由Ax1By0C=0,
得x1=—(By0C)/A,
∴|PR|=|x0—x1|=|Ax0By0C|/|A|;
同理:|PS|=|Ax0By0C|/|B|。
教師:|RS|怎么求?
學(xué)生3:|RS|==(/|AB|)·|Ax0By0C|。
教師:|PQ|結(jié)果是什么?
學(xué)生3:|PQ|=。
教師:公式的這種推導(dǎo)方法是否需要作補充說明?
學(xué)生4:當A=0或B=0時,ΔPRS不存在,故應(yīng)說明公式當A=0或B=0時是否適用?
由(2)、(3)檢驗可知公式依然成立,即公式對任意直線都適用。
3、教師提出問題,學(xué)生分組討論(約10分鐘)
教師:推導(dǎo)點到直線的距離公式的方法不少。前面我們學(xué)了函數(shù)、三角函數(shù)、向量、不等式等數(shù)學(xué)知識,你能用所學(xué)過的.知識從不同角度、采用不同方法來推導(dǎo)這個公式嗎?請同學(xué)們先獨立思考,然后在小組上進行討論交流,由組長負責記錄。10分鐘后每組推選一名代表對本組找到的最好的一種推導(dǎo)方法通過實物投影進行"成果"交流。
學(xué)生們積極探討;教師來回巡視,回答各研究小組的詢問......
4、學(xué)生交流"成果",教師點評小結(jié)(約16分鐘)
經(jīng)過約十分鐘的研討,各小組都找到了新的推導(dǎo)方法。于是教師請4名代表依次上講臺(讓準備成熟的先講),借助實物投影介紹本組的"成果"。由于時間關(guān)系,每組只要求講一種方法,用時不超過4分鐘,且各組的方法不能重復(fù)。
學(xué)生5:我們用的是"設(shè)而不求,整體代換"的數(shù)學(xué)思想。請看投影屏幕:
設(shè)Q的坐標為(x1,y1),則直線PQ的斜率k1=,又直線l的斜率k=—,于是由PQ⊥l得,k1k=—1即B(x1—x0)—A(y1—y0)=0①
又因為Ax1By1C=0,即Ax1By1=—C
兩邊同減Ax0By0得A(x1—x0)B(y1—y0)=—(Ax0By0C)②
于是①2②2得,(A2B2)[(x1—x0)2(y1—y0)2]=(Ax0By0C)2,
即(A2B2)d2=(Ax0By0C)2
所以d=。
教師:"設(shè)而不求,整體代換",真是奧妙無窮,這是解析幾何減少運算量的有效途徑,同時也體現(xiàn)了數(shù)學(xué)的內(nèi)在美,妙不可言。
學(xué)生6:我們小組向大家介紹一種獨特的方法——向量法,請看投影屏幕:
如圖2,設(shè)T(x1,y1)為直線l上的任意一點,則Ax1By1C=0,=(x1—x0,y1—y0)
∵PQ⊥直線l,
∴平行于直線l的法向量=(A,B)
另設(shè)與的夾角為θ,則·=cosθ
即|A(x1—x0)B(y1—y0)|=|||cosθ|
即|Ax0By0C|=·d
∴d=。
教師:向量是數(shù)量與圖形的有機結(jié)合,解析幾何是用代數(shù)的方法解決幾何問題,兩者都體現(xiàn)了數(shù)形結(jié)合的思想,第三小組的推導(dǎo)方法證明了這一點,也再次說明了向量具有很強的實用性與工具性,用向量法解解析幾何題確實行之有效。
學(xué)生7::我們小組向大家介紹向量的另一種方法,妙用向量數(shù)量積的性質(zhì).請看投影屏幕:
如圖3,設(shè)垂足是點H(m,n),
直線l的法向量共線,
這是相當簡單的方法了。
教師:巧妙利用向量數(shù)量積的性質(zhì)來求距離,簡直是"巧奪天工",與其他方法相比,這種方法有絕對優(yōu)勢,我們必須重視對向量工具性的研究和應(yīng)用。
學(xué)生8:剛才三個小組的證明方法確實精彩,我們也發(fā)現(xiàn)了一種巧妙的方法,把它稱為"柯西不等式法",請看投影屏幕:
我們知道,P點到直線l的距離,實質(zhì)上是點P與直線l上任意一點T的距離的最小值,于是我們設(shè)T(x1,y1)為直線l上的任一點(如圖2),則Ax1By1C=0,
而d=|PT|min,于是|PT|=
=×,
利用柯西不等式,便有|PT|≥=,
所以d=,此時,即PT垂直于直線l。
教師:這一證法果然十分巧妙,包含的數(shù)學(xué)思想十分豐富。由點到直線的距想到最小值,又由最小值想到不等式,在一步步"轉(zhuǎn)化"中問題得到圓滿解決。同時也體現(xiàn)了不等式的工具作用。
5、公式應(yīng)用(學(xué)生練習(xí),約3分鐘)
。1)求P(6,7)到直線l:3x—4y5=0的距離d。
。ㄖ苯哟降么鸢福篸=1,檢驗嘗試性題組第(4)的答案)
。2)求P(—1,1)到直線l:的距離d。
。ㄏ然本方程為一般式再代公式得答案:)
6、教師小結(jié)并布置作業(yè)(約1分鐘)
這節(jié)課我們學(xué)習(xí)了點到直線的距離公式,在公式的推導(dǎo)中學(xué)到了許多重要的數(shù)學(xué)思想和方法,感受到了數(shù)學(xué)的奧妙,也感受到了成功的喜悅。其實這個公式的推導(dǎo)方法不下十種,由于課堂上時間緊,許多同學(xué)有創(chuàng)造性的推導(dǎo)方法不能進行展示、交流,請同學(xué)們撰寫一篇題為《點到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文,作為本節(jié)課的作業(yè),允許三到四人合作完成。
設(shè)計說明:
數(shù)學(xué)公式的教學(xué)應(yīng)包含兩個部分:公式的推導(dǎo)和公式的運用。由于受應(yīng)試教育的影響,前者往往被"輕描淡寫",而后者卻搞得"轟轟烈烈",這顯然與"重結(jié)論,但更重過程"的現(xiàn)代教育理念相違背。其實數(shù)學(xué)公式的推導(dǎo)都蘊含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,誰忽視了這個"產(chǎn)生過程",誰就忽視了數(shù)學(xué)的"精髓",誰就忽視了學(xué)生探究性思維品質(zhì)的培養(yǎng)。
這節(jié)課把研究性學(xué)習(xí)引入公式的教學(xué),讓學(xué)生真正成為課堂的主人。在推導(dǎo)公式的過程中,學(xué)生通過克服困難的經(jīng)歷,以及獲得成功的體驗,鍛煉了意志,增強了信心。其實所有公式的教學(xué)、定理的教學(xué)都應(yīng)向這個方向努力。
數(shù)學(xué)教學(xué),從根本上講就是提高學(xué)生的數(shù)學(xué)素質(zhì),提高學(xué)生的數(shù)學(xué)素質(zhì)的有效途徑有二:其一,使學(xué)生善于總結(jié),使零亂的知識系統(tǒng)化、綜合化;其二,使學(xué)生善于聯(lián)想,培養(yǎng)發(fā)散性思維。本節(jié)課使學(xué)會從不同的角度思考問題,加強知識間的聯(lián)系,正是鍛練、提高學(xué)生運用知識分析問題和解決問題的能力,從而提高數(shù)學(xué)素質(zhì)。
通過公式求點到直線的距離并不困難,但這個公式的推導(dǎo)方法不下十種,且各種推導(dǎo)都蘊含著重要的數(shù)學(xué)思想、方法,由于課堂上時間緊,許多同學(xué)的有創(chuàng)造性的推導(dǎo)方法不能進行展示、交流,故課外請同學(xué)們撰寫一篇題為《點到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文作為本節(jié)課的作業(yè)。考慮到同學(xué)的個體差異,故允許三到四人合作完成。同時通過學(xué)生小論文的完成情況對這節(jié)課的教學(xué)效果作出評價。
本課設(shè)計有一定的彈性,實際教學(xué)中,學(xué)生想到的推導(dǎo)方法不一定是上述幾種,我將針對每一種方法的特點進行適當?shù)狞c評。進行交流的學(xué)生不一定是四人,若時間不夠,公式應(yīng)用留到下節(jié)課,本節(jié)課只完成公式推導(dǎo)。
高中數(shù)學(xué)說課稿4
一、教學(xué)目標
。1)知識與能力目標:學(xué)習(xí)橢圓的定義,掌握橢圓標準方程的兩種形式及其推
導(dǎo)過程;能根據(jù)條件確定橢圓的標準方程,掌握用待定系數(shù)法求橢圓的標準方程。
。2)過程與方法目標:通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探
索能力;通過對橢圓標準方程的推導(dǎo),使學(xué)生進一步掌握求曲線方程的一般方法,提高學(xué)生運用坐標法解決幾何問題的能力,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想方法。
(3)情感、態(tài)度與價值觀目標:通過讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識,培養(yǎng)學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。
二、教學(xué)重點、難點
(1)教學(xué)重點:橢圓的定義及橢圓標準方程,用待定系數(shù)法和定義法求曲線方程。
。2)教學(xué)難點:橢圓標準方程的建立和推導(dǎo)。
三、教學(xué)過程
(一)創(chuàng)設(shè)情境,引入概念
1、動畫演示,描繪出橢圓軌跡圖形。
2、實驗演示。
思考:橢圓是滿足什么條件的點的軌跡呢?
(二)實驗探究,形成概念
1、動手實驗:學(xué)生分組動手畫出橢圓。
實驗探究:
保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?
思考:根據(jù)上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?
2、概括橢圓定義
引導(dǎo)學(xué)生概括橢圓定義橢圓定義:平面內(nèi)與兩個定點距離的和等于常數(shù)(大于)的點的軌跡叫橢圓。
教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。
思考:焦點為的橢圓上任一點M,有什么性質(zhì)?
令橢圓上任一點M,則有
(三)研討探究,推導(dǎo)方程
1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?
2、研討探究
問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有
,嘗試推導(dǎo)橢圓的方程。
思考:如何建立坐標系,使求出的方程更為簡單?
將各組學(xué)生的討論方案歸納起來評議,選定以下兩種方案,由各組學(xué)生自己完成設(shè)點、列式、化簡。
方案一方案二
按方案一建立坐標系,師生研討探究得到橢圓標準方程
=1(),其中b2=a2-c2(b>0);
選定方案二建立坐標系,由學(xué)生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。
教師指出:我們所得的兩個方程=1和=1()都是橢圓的標準方程。
(四)歸納概括,方程特征
1、觀察橢圓圖形及其標準方程,師生共同總結(jié)歸納
。1)橢圓標準方程對應(yīng)的橢圓中心在原點,以焦點所在軸為坐標軸;
。2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;
。3)橢圓標準方程中三個參數(shù)a,b,c關(guān)系:;
。4)橢圓焦點的位置由標準方程中分母的大小確定;
。5)求橢圓標準方程時,可運用待定系數(shù)法求出a,b的值。
2、在歸納總結(jié)的基礎(chǔ)上,填下表
標準方程
圖形a,b,c關(guān)系焦點坐標焦點位置
在x軸上
在y軸上
(五)例題研討,變式精析
例1、求適合下列條件的橢圓的標準方程
。1)兩個焦點的坐標分別是,橢圓上一點P到兩焦點距離和等于10。
。2)兩焦點坐標分別是,并且橢圓經(jīng)過點。
例2、(1)若橢圓標準方程為及焦點坐標。
。2)若橢圓經(jīng)過兩點求橢圓標準方程。
。3)若橢圓的一個焦點是,則k的值為。
(A)(B)8(C)(D)32
例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。
(六)變式訓(xùn)練,探索創(chuàng)新
1、寫出適合下列條件的橢圓標準方程
。1),焦點在x軸上;
。2)焦點在x軸上,焦距等于4,并且經(jīng)過點P;
2、若方程表示焦點在y軸上的橢圓,則k的范圍。
3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。
4、已知橢圓的焦距相等,求實數(shù)m的值。
5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。
6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。
(七)小結(jié)歸納,提高認識
師生共同歸納本節(jié)所學(xué)內(nèi)容、知識規(guī)律以及所學(xué)的數(shù)學(xué)思想和方法。
(八)作業(yè)訓(xùn)練,鞏固提高
課本第96頁習(xí)題§8。1第3題、第5題、第6題。
課后思考題:
1、知是橢圓的兩個焦點,AB是過的弦,則周長是。
(A)2a(B)4a(C)8a(D)2a2b
2、的兩個頂點A,B的坐標分別是邊AC,BC所在直線的斜
率之積等于,求頂點C的軌跡方程。
2、與圓外切,同時與圓內(nèi)切,求動圓圓心的'軌跡方程,并說明它是什么樣的曲線?
教學(xué)設(shè)計說明
橢圓是圓錐曲線中重要的一種,本節(jié)內(nèi)容的學(xué)習(xí)是后繼學(xué)習(xí)其它圓錐曲線的基礎(chǔ),坐標法是解析幾何中的重要數(shù)學(xué)方法,橢圓方程的推導(dǎo)是利用坐標法求曲線方程的很好應(yīng)用實例。本節(jié)課內(nèi)容的學(xué)習(xí)能很好地在課堂教學(xué)中展現(xiàn)新課程的理念,主要采用學(xué)生自主探究學(xué)習(xí)的方式,使培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力的教學(xué)思想貫穿于本節(jié)課教學(xué)設(shè)計的始終。
橢圓是生活中常見的圖形,通過實驗演示,創(chuàng)設(shè)生動而直觀的情境,使學(xué)生親身體會橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習(xí)興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學(xué)生動手畫橢圓并合作探究的學(xué)習(xí)方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數(shù)學(xué)化過程,有利于培養(yǎng)學(xué)生觀察分析、抽象概括的能力。
橢圓方程的化簡是學(xué)生從未經(jīng)歷的問題,方程的推導(dǎo)過程采用學(xué)生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過程,使學(xué)生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學(xué)生體會成功的快樂,提高學(xué)生的數(shù)學(xué)探究能力,培養(yǎng)學(xué)生獨立主動獲取知識的能力。
設(shè)計例題、習(xí)題的研討探究變式訓(xùn)練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調(diào)動、活躍學(xué)生的思維,發(fā)展學(xué)生數(shù)學(xué)思維能力,讓學(xué)生在解決問題中發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新能力,同時培養(yǎng)學(xué)生大膽實踐、勇于探索的精神,開闊學(xué)生知識應(yīng)用視野。
高中數(shù)學(xué)說課稿5
開始:各位專家領(lǐng)導(dǎo), 好!
今天我將要為大家講的課題是
首先,我對本節(jié)教材進行一些分析
一、教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)內(nèi)容在全書及章節(jié)的地位:《 》是高中數(shù)學(xué)新教材第 冊( )第 章第 節(jié)。在此之前,學(xué)生已學(xué)習(xí)了
,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生:
二、 教學(xué)目標
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標:
1 基礎(chǔ)知識目標:
2 能力訓(xùn)練目標:
3 創(chuàng)新素質(zhì)目標:
4 個性品質(zhì)目標:
三、 教學(xué)重點、難點、關(guān)鍵
本著課程標準,在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關(guān)鍵:
下面,為了講清重點、難點,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上談?wù)劊?/p>
四、 教法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生
“知其然”而且要使學(xué)生“知其所以然”,
我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程。基于本節(jié)課的特點:
,應(yīng)著重采用 的教學(xué)方法。即:
五、 學(xué)法
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的'人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
1、理論:
2、實踐:
3、能力:
最后我來具體談一談這一堂課的教學(xué)過程:
六、 教學(xué)程序及設(shè)想
1、由 引入:
把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。
在實際情況下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗,同化和索引出當前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:
2、由實例得出本課新的知識點是:
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓(xùn)練。
課后練習(xí)
使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
5、總結(jié)結(jié)論,強化認識。
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標。
6、變式延伸,進行重構(gòu)。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。
7、板書。
8、布置作業(yè)。
針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負”的目的。
結(jié)束:說課是教師面對同行和其它聽眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說課對我們大家仍是新事物,今后我也將進一步說好課,并希望各位專家領(lǐng)導(dǎo)對本堂說課提出寶貴意見。
注意時間掌握
六、注意靈活導(dǎo)入新知識點。
電腦課件
使用投影
根據(jù)時間進行增刪
高中數(shù)學(xué)說課稿6
一、背景分析
1、學(xué)習(xí)任務(wù)分析:充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。
教學(xué)重點:充分條件、必要條件和充要條件三個概念的定義。
2、學(xué)生情況分析:從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習(xí)中,把學(xué)生的學(xué)習(xí)要求規(guī)定為“初步掌握充要條件”(注意:新教學(xué)大綱的教學(xué)目標是“掌握充要條件的意義”),這是比較切合教學(xué)實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學(xué)時,不可拔高要求追求一步到位,而要在今后的教學(xué)中滾動式逐步深化,使之與學(xué)生的知識結(jié)構(gòu)同步發(fā)展完善。
教學(xué)難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學(xué)實踐,學(xué)生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學(xué)生難于理解。
教學(xué)關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學(xué)中,要強調(diào)先找出A、B,否則,學(xué)生可能會對必要條件難以理解。
二、教學(xué)目標設(shè)計:
。ㄒ唬┲R目標:
1、正確理解充分條件、必要條件、充要條件三個概念。
2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。
。ǘ┠芰δ繕耍
1、培養(yǎng)學(xué)生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。
2、培養(yǎng)學(xué)生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結(jié)出一般規(guī)律。
。ㄈ┣楦心繕耍
1、通過以學(xué)生為主體的`教學(xué)方法,讓學(xué)生自己構(gòu)造數(shù)學(xué)命題,發(fā)展體驗獲取知識的感受。
2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學(xué)們的辯證唯物主義觀點。
3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學(xué)生自主學(xué)習(xí),勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進取的精神。
三、教學(xué)結(jié)構(gòu)設(shè)計:
數(shù)學(xué)知識來源于生活實際,生活本身又是一個巨大的數(shù)學(xué)課堂,我在教學(xué)過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強數(shù)學(xué)教學(xué)的實踐性,給數(shù)學(xué)找到生活的原型。我對本節(jié)課的數(shù)學(xué)知識結(jié)構(gòu)進行創(chuàng)造性地“教學(xué)加工”,在教學(xué)方法上采用了“合作——探索”的開放式教學(xué)模式,使課堂教學(xué)體現(xiàn)“參與式”、“生活化”、“探索性”,保證學(xué)生對數(shù)學(xué)知識的主動獲取,促進學(xué)生充分、和諧、自主、個性化的發(fā)展。
整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導(dǎo)學(xué)生分析實例,給出定義 例題分析(采用開放式教學(xué)) 知識小結(jié) 擴展例題 練習(xí)反饋
整個教學(xué)設(shè)計的主要特色:
。1)由生活事例引出課題;
。2)采用開放式教學(xué)模式;
。3)擴展例題是分析生活中的名言名句,又將數(shù)學(xué)融入生活中。
努力做到:“教為不教,學(xué)為會學(xué)”;要“授之以魚”更要“授之以漁”。
四、教學(xué)媒體設(shè)計:
本節(jié)課是概念課,要避免單一的下定義作練習(xí)模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學(xué),添加了一些與例題相匹配的圖片背景,以激發(fā)學(xué)生的學(xué)習(xí)興趣,另外將學(xué)生的自編題利用多媒體課件展示出來分析,提高了課堂教學(xué)的效率。
五、教學(xué)過程設(shè)計:
第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:
考慮到高一學(xué)生學(xué)習(xí)這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學(xué)生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。
我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了。”這樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學(xué)生得出充分條件的定義。這里要強調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。
第二個事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學(xué)生得出必要條件的定義。這里要強調(diào)該事件包括:A:接氧氣;B:活了。
用以上兩個生活中的事例來說明數(shù)學(xué)中應(yīng)研究的概念、關(guān)系,會使學(xué)生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。
第二,引導(dǎo)學(xué)生分析實例,給出定義。
在第一部分激發(fā)起學(xué)生的學(xué)習(xí)興趣后,緊接著開展第二部分,引導(dǎo)學(xué)生分析實例,讓學(xué)生從事例中抽象出數(shù)學(xué)概念,得出本節(jié)課所要學(xué)習(xí)的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學(xué)生分析。
得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。
還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學(xué)生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。
當兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學(xué)生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數(shù)學(xué)事例來強化。
高中數(shù)學(xué)說課稿7
【一】教學(xué)背景分析
1.教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強.
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標:
3.教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;
③增強學(xué)生用數(shù)學(xué)的意識.
(3) 情感目標:①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
根據(jù)以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4. 教學(xué)重點與難點
(1)重點:圓的標準方程的求法及其應(yīng)用.
(2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;
、谶x擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.
為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上進行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.
2.學(xué)法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計加以說明:
【三】教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).
(二)深入探究——獲得新知
問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學(xué)生對圓心不在原點的情況進行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié).
(三)應(yīng)用舉例——鞏固提高
I.直接應(yīng)用 內(nèi)化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的`切線問題作準備.
II.靈活應(yīng)用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.
III.實際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.
(四)反饋訓(xùn)練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴謹性具有良好的效果.
(五)小結(jié)反思——拓展引申
1.課堂小結(jié)
把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.
3.激發(fā)新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準備.
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計
(一)突出重點 抓住關(guān)鍵 突破難點
好學(xué)教育:
求圓的標準方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破.
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.
高中數(shù)學(xué)說課稿8
一、教學(xué)背景分析
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標:
3、教學(xué)目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題。
(2) 能力目標:①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
②加深對數(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;
、墼鰪妼W(xué)生用數(shù)學(xué)的意識。
(3) 情感目標:①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4、教學(xué)重點與難點
(1)重點:圓的標準方程的求法及其應(yīng)用。
(2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;
、谶x擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題。
為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上進行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程。
下面我就對具體的教學(xué)過程和設(shè)計加以說明:
三、教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二 1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I、直接應(yīng)用 內(nèi)化新知
問題三 1、寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點。
2、寫出圓的圓心坐標和半徑。
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的`標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備。
II、靈活應(yīng)用 提升能力
問題四 1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。
III、實際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練——形成方法
問題六 1、求過原點和點,且圓心在直線上的圓的標準方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴謹性具有良好的效果。
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:。
②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。
3、激發(fā)新疑
問題七 1、把圓的標準方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計:
橫向闡述教學(xué)設(shè)計
(一)突出重點 抓住關(guān)鍵 突破難點
求圓的標準方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說課稿9
說教學(xué)目標
A、知識目標:
掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。
B、能力目標:
(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
。3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。
C、情感目標:(數(shù)學(xué)文化價值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
。2)通過公式的運用,樹立學(xué)生"大眾教學(xué)"的思想意識。
(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。
說教學(xué)重點:
等差數(shù)列前n項和的公式。
說教學(xué)難點:
等差數(shù)列前n項和的公式的靈活運用。
說教學(xué)方法:
啟發(fā)、討論、引導(dǎo)式。
教具:
現(xiàn)代教育多媒體技術(shù)。
教學(xué)過程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的'概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。
三、公式的應(yīng)用(通過實例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
。3)2+4+6+。。。。。。+2n
。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。
生5:直接利用等差數(shù)列求和公式(I),得
(1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
(3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個
師:很好!在解題時我們應(yīng)仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。
例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。
師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)
、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀點認識Sn公式。
例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê唵涡〗Y(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。
師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導(dǎo)學(xué)生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。
四、小結(jié)與作業(yè)。
師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。
生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項和公式。
2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。
2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。
本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。
數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。
作業(yè):P49:13、14、15、17
高中數(shù)學(xué)說課稿10
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學(xué)數(shù)學(xué)教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。
一、教材分析
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。
三、教學(xué)目標
1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進行思考。
情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學(xué)生體驗學(xué)習(xí)成就感,增強數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點、難點
教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。
教學(xué)難點:正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達成上面的教學(xué)目標,促進學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實物投影儀等教學(xué)手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。
五、教學(xué)過程
為了很好地完成我所確定的教學(xué)目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
[設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結(jié)論還成立嗎?
[設(shè)計說明]此時放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵學(xué)生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)
[設(shè)計說明] 放手給學(xué)生實踐的機會和時間,使學(xué)生真正的'參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時,考慮到有部分同學(xué)基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學(xué)生動手的同時,通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學(xué)有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內(nèi)容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個奇跡。老師希望21世紀的你能在今后的學(xué)習(xí)中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學(xué)家的老師了。當然,老師的希望能否變成現(xiàn)實,就要看大家的了。
[設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。
(四)強化理解,簡單應(yīng)用
下面請大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。
[設(shè)計說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學(xué)困生進行輔導(dǎo),以減少掉隊的同學(xué)數(shù)量,同時培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。
我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實踐中發(fā)現(xiàn)的問題給予必要的講評)
[設(shè)計說明] 充分給學(xué)生自己動手的時間和機會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強化練習(xí)
讓全體同學(xué)限時完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設(shè)計說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進一步討論》
(五)小結(jié)歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應(yīng)用
4、涉及的數(shù)學(xué)思想和方法。
[設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進一步回顧和體會知識的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習(xí)題1.1A組第1題。
2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設(shè)計說明] 對不同水平的學(xué)生設(shè)計不同梯度的作業(yè),尊重學(xué)生的個性差異,有利于因材施教的教學(xué)原則的貫徹。
高中數(shù)學(xué)說課稿11
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標:
認知目標:通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的.推導(dǎo),并逐步得到深化。
三、學(xué)法
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境(3分鐘)
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關(guān)系
注意:1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
(三)總結(jié)--應(yīng)用(3分鐘)
1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(五)課堂練習(xí)(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
五、教學(xué)反思
從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。
高中數(shù)學(xué)說課稿12
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標分析:
教學(xué)重點、難點
重點:集合的含義與表示方法。
難點:表示法的恰當選擇。
教學(xué)目標
l.知識與技能
。1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
。2)知道常用數(shù)集及其專用記號;
。3)了解集合中元素的確定性;ギ愋浴o序性;
。4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2. 過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。
3. 情感、態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。
三、教法分析
1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標。
2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
四、過程分析
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。 與此同時,教師對學(xué)生的活動給予評價。
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
。ǘ┭刑叫轮,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
。1)1-20以內(nèi)的所有質(zhì)數(shù);
。2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
。4)所有的正方形;
。5)海南省在20xx年9月之前建成的所有立交橋;
。6)到一個角的兩邊距離相等的所有的點;
。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。
一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
。ㄈ┵|(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的`全體是否組成集合,并說明理由:
。1)大于3小于11的偶數(shù);
。2)我國的小河流。
讓學(xué)生充分發(fā)表自己的建解。
3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。
4.教師提出問題,讓學(xué)生思考
。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果是集合A的元素,就說屬于集合A,記作。
如果不是集合A的元素,就說不屬于集合A,記作。
。2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。
。3)讓學(xué)生完成教材第6頁練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?
。3)如何根據(jù)問題選擇適當?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
。ㄋ模╈柟躺罨,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語言描述集合{1,3,5,7,9};
。2)用例舉法表示集合
。3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題。
2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。
高中數(shù)學(xué)說課稿13
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學(xué)過的隨機事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。
2.教學(xué)的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。
二、教學(xué)目標分析
1.知識與技能目標
。1)通過試驗理解基本事件的概念和特點
(2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個基本特征,推導(dǎo)出古典概型下的概率的計算公式。
2、過程與方法:
經(jīng)歷公式的推導(dǎo)過程,體驗由特殊到一般的數(shù)學(xué)思想方法。
3、情感態(tài)度與價值觀:
。1)用具有現(xiàn)實意義的實例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。
。2)讓學(xué)生掌握"理論來源于實踐,并把理論應(yīng)用于實踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據(jù)本節(jié)課的特點,采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的主體能動性,讓每一個學(xué)生充分地參與到學(xué)習(xí)活動中來。
2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度。
、鍎(chuàng)設(shè)情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學(xué)小組至少完成20次(最好是整十數(shù)),最后由代表匯總;
試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學(xué)小組至少完成60次(最好是整十數(shù)),最后由代表匯總。
在課上,學(xué)生展示模擬試驗的操作方法和試驗結(jié)果,并與同學(xué)交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。
2.根據(jù)以前的學(xué)習(xí),上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]
「設(shè)計意圖」通過課前的模擬實驗,讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。
㈡思考交流、形成概念
學(xué)生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設(shè)計意圖」讓學(xué)生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時也教會學(xué)生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。
「設(shè)計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點
觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:
讓學(xué)生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。
[經(jīng)概括總結(jié)后得到:
。1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)
。2)每個基本事件出現(xiàn)的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設(shè)計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點,能讓學(xué)生很好的理解古典概型。
、缬^察分析、推導(dǎo)方程
問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?
教師提出問題,引導(dǎo)學(xué)生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的概率計算公式:
「設(shè)計意圖」鼓勵學(xué)生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?
。2)在使用古典概型的概率公式時,應(yīng)該注意什么?
「設(shè)計意圖」教師提問,學(xué)生回答,深化對古典概型的`概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。
、枥}分析、推廣應(yīng)用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒有注意到的關(guān)鍵點加以說明。
「設(shè)計意圖」讓學(xué)生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結(jié)果?
。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
(3)向上的點數(shù)之和是5的概率是多少?
先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗中的基本事件的總數(shù)。
「設(shè)計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。
「設(shè)計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。
、昕偨Y(jié)概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學(xué)生小結(jié)歸納,不足的地方老師補充說明。
「設(shè)計意圖」使學(xué)生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學(xué)過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。
、氩贾米鳂I(yè)
課本練習(xí)1、2、3
「設(shè)計意圖」進一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。
高中數(shù)學(xué)說課稿14
各位評委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內(nèi)容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。
。ǘ、學(xué)情分析
通過前一階段的教學(xué),學(xué)生對 的認識已有了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.
。ㄈ┙虒W(xué)課時
本節(jié)內(nèi)容分 課時學(xué)習(xí)。(本課時,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。)
二、教學(xué)目標分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高中生的認知規(guī)律,本節(jié)課的教學(xué)目標確定為:
知識與技能:
過程與方法:
情感態(tài)度:
(例如:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認識,對學(xué)生進行辨證唯物主義教育)
在探索過程中,培養(yǎng)獨立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的`喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時,讓學(xué)生養(yǎng)成理性思維的品質(zhì)。
三、重難點分析
重點確定為:
要把握這個重點。關(guān)鍵在于理解
其本質(zhì)就是
本節(jié)課的難點確定為:
要突破這個難點,讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實現(xiàn)。
五、說教學(xué)過程
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
(一)創(chuàng)設(shè)情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
。ㄋ模⿷(yīng)用新知,熟練掌握 …………………
。ㄎ澹┛偨Y(jié)…………………
。┳鳂I(yè)布置…………………
(七)板書設(shè)計…………………
以上是我對本節(jié)課的一些粗淺的認識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝
著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現(xiàn)計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數(shù)學(xué)說課稿15
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2. 教育教學(xué)目標:
根據(jù)上述教材分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征,制定如下教學(xué)目標:
(1)知識目標:
(2)能力目標:通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3. 重點,難點以及確定依據(jù):
下面,為了講清重難上點,使學(xué)生能達到本節(jié)課設(shè)定的目標,再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說教法)
1. 教學(xué)手段:
如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標。在教學(xué)過程中擬計劃進行如下操作:教學(xué)方法;诒竟(jié)課的特點: 應(yīng)著重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3. 學(xué)情分析:(說學(xué)法)
(1)學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4. 教學(xué)程序及設(shè)想:
(1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
(5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的`地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標。
(6)變式延伸,進行重構(gòu),重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業(yè)。
針對學(xué)生素質(zhì)的差異進行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
(一)課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)集合教學(xué)反思
集合這章內(nèi)容,教學(xué)參考書上安排的課時為五課時,我們的導(dǎo)學(xué)案也是安排五課時,實際教學(xué)時,由于對學(xué)生的實際情況估計不足,第一課時的導(dǎo)學(xué)案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺學(xué)起來比較困難。針對這種情況,我在實際教學(xué)時,首先要求學(xué)生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問題時,教會學(xué)生對元素的性質(zhì)進行分析,反復(fù)訓(xùn)練,讓學(xué)生通過實例體會這三個性質(zhì)。
第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學(xué)難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關(guān)系和運算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導(dǎo)學(xué)生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉(zhuǎn)換,可以幫助學(xué)生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
【高中數(shù)學(xué)說課稿】相關(guān)文章:
高中數(shù)學(xué)說課稿《等比數(shù)列》08-19
有關(guān)高中數(shù)學(xué)說課稿錦集8篇08-27
實用的高中數(shù)學(xué)說課稿范文集合5篇09-10
高中數(shù)學(xué)《等比數(shù)列的前n項和》說課稿10-17
高中數(shù)學(xué)教學(xué)設(shè)計10-27
高中數(shù)學(xué)教學(xué)總結(jié)06-01