精品国产一区二区三 , 亚洲综合五月 , 俄罗斯特级高清毛片免费 , 激情福利,久久久日本,欧美一三区,欧美黄色大片久久

教案

整式的乘除與因式分解教案

時間:2025-09-04 16:26:10 銀鳳 教案 我要投稿

整式的乘除與因式分解教案(通用6篇)

  作為一名老師,時常需要用到教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。那么寫教案需要注意哪些問題呢?以下是小編為大家收集的整式的乘除與因式分解教案,歡迎大家分享。

整式的乘除與因式分解教案(通用6篇)

  整式的乘除與因式分解教案 1

  15.1.1 整式

  教學(xué)目標

  1.單項式、單項式的定義.

  2.多項式、多項式的次數(shù).

  3、理解整式概念.

  教學(xué)重點

  單項式及多項式的有關(guān)概念.

  教學(xué)難點

  單項式及多項式的有關(guān)概念.

  教學(xué)過程

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  在七年級,我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題

  1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

  2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?

  結(jié)論:

  1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

  2.小王的平均速度是 .

  問題:這些式子有什么特征呢?

 。1)有數(shù)字、有表示數(shù)字的字母.

 。2)數(shù)字與字母、字母與字母之間還有運算符號連接.

  歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

  判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.

 、颍鞔_和鞏固整式有關(guān)概念

  (出示投影)

  結(jié)論:(1)正方形的周長:4x.

 。2)汽車走過的路程:vt.

 。3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

 。4)n的相反數(shù)是-n.

  分析這四個數(shù)的特征.

  它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.

  請同學(xué)們閱讀課本P160~P161單項式有關(guān)概念.

  根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項式?是單項式的,寫出它的系數(shù)和次數(shù).

  結(jié)論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.

  問題:vt中v和t的指數(shù)都是1,它不是一次單項式嗎?

  結(jié)論:不是.根據(jù)定義,單項式vt中含有兩個字母,所以它的次數(shù)應(yīng)該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項式而不是一次單項式.

  生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯(lián)系呢?

  寫出下列式子(出示投影)

  結(jié)論:(1)t-5.(2)3x+5y+2z.

 。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的'面積,即 ab-3.12r2.

 。4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

  我們可以觀察下列代數(shù)式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?

  這樣推理合情合理.請看投影,熟悉下列概念.

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

  a+b+c的項分別是a、b、c.

  t-5的項分別是t、-5,其中-5是常數(shù)項.

  3x+5y+2z的項分別是3x、5y、2z.

  ab-3.12r2的項分別是 ab、-3.12r2.

  x2+2x+18的項分別是x2、2x、18. 找多項式的次數(shù)應(yīng)抓住兩條,一是找準每個項的次數(shù),二是取每個項次數(shù)的最大值.根據(jù)這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.

  這節(jié)課,通過探究我們得到單項式和多項式的有關(guān)概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統(tǒng)稱為整式.

 、螅S堂練習(xí)

  1.課本P162練習(xí)

 、簦n時小結(jié)

  通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關(guān)概念是本節(jié)的重點,特別是它們的次數(shù).在現(xiàn)實情景中進一步理解了用字母表示數(shù)的意義,發(fā)展符號感.

  Ⅴ.課后作業(yè)

  1.課本P165~P166習(xí)題15.1─1、5、8、9題.

  2.預(yù)習(xí)“整式的加減”.

  課后作業(yè):《課堂感悟與探究》

  整式的乘除與因式分解教案 2

  整式乘除與因式分解

  一.回顧知識點

  1、主要知識回顧:

  冪的運算性質(zhì):

  aman=am+n(m、n為正整數(shù))

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  =amn(m、n為正整數(shù))

  冪的乘方,底數(shù)不變,指數(shù)相乘.

  (n為正整數(shù))

  積的乘方等于各因式乘方的積.

  =am-n(a≠0,m、n都是正整數(shù),且m>n)

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  零指數(shù)冪的概念:

  a0=1(a≠0)

  任何一個不等于零的數(shù)的零指數(shù)冪都等于l.

  負指數(shù)冪的概念:

  a-p=(a≠0,p是正整數(shù))

  任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).

  也可表示為:(m≠0,n≠0,p為正整數(shù))

  單項式的乘法法則:

  單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.

  單項式與多項式的乘法法則:

  單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.

  多項式與多項式的乘法法則:

  多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.

  單項式的除法法則:

  單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

  多項式除以單項式的法則:

  多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍.

  3、因式分解:

  因式分解的定義.

  把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.

  掌握其定義應(yīng)注意以下幾點:

  (1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  二、熟練掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的`概念;

  (2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:①系數(shù)一各項系數(shù)的最大公約數(shù);②字母——各項含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

  (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項.

  (4)注意點:①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項式的第一項的系數(shù)是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的

  2、公式法

  運用公式法分解因式的實質(zhì)是把整式中的乘法公式反過來使用;

  常用的公式:

  ①平方差公式:a2-b2=(a+b)(a-b)

 、谕耆椒焦剑篴2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  整式的乘除與因式分解教案 3

  教學(xué)目標:

  1、學(xué)生能夠理解因式分解的概念。

  2、學(xué)生能夠應(yīng)用因式分解解決實際問題。

  3、學(xué)生能夠簡化代數(shù)式并解決相關(guān)的數(shù)學(xué)題目。

  教學(xué)準備:

  1、白板、黑板或投影儀來展示教學(xué)內(nèi)容。

  2、學(xué)生練習(xí)冊或作業(yè)本。

  教學(xué)步驟:

  步驟1:引入因式分解概念(10分鐘)

  學(xué)生會發(fā)現(xiàn)數(shù)學(xué)中的代數(shù)式經(jīng)常出現(xiàn)多個項的乘積,比如(a+b)、(a-b)等。引入因式分解的概念,解釋代數(shù)式可以進行因式分解,從而更好地理解和簡化代數(shù)式。

  步驟2:理解因式分解的重要性(15分鐘)

  在這一部分,老師可以通過大量的實例,如多項式的乘積、簡化分數(shù)等,來幫助學(xué)生理解因式分解在求解問題和簡化計算中的重要性。

  步驟3:展示因式分解的步驟(10分鐘)

  解釋因式分解的步驟,例如將代數(shù)式進行拆分,找到公因子,應(yīng)用分配律,最終將代數(shù)式簡化為乘積的形式。通過在黑板上解決一些示例問題,讓學(xué)生理解具體的步驟。

  步驟4:實際應(yīng)用案例(20分鐘)

  給學(xué)生一些實際的`應(yīng)用案例,如利用因式分解解決面積和周長的問題,解決一元二次方程的根等。讓學(xué)生通過解題來鞏固他們對因式分解的理解并應(yīng)用所學(xué)知識。

  步驟5:團隊合作活動(15分鐘)

  將學(xué)生分成小組,給每個小組一個因式分解的問題。要求學(xué)生協(xié)作解決問題,并在規(guī)定時間內(nèi)完成,然后展示他們的解決方案。通過這種互動活動,學(xué)生可以互相學(xué)習(xí)并鞏固因式分解的知識。

  步驟6:總結(jié)和擴展(10分鐘)

  總結(jié)因式分解的概念和步驟,并鼓勵學(xué)生在課后進一步探索因式分解的應(yīng)用,如解決更復(fù)雜的代數(shù)問題,求解方程等。鼓勵學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的因式分解的重要性,并將其擴展到更廣泛的數(shù)學(xué)領(lǐng)域。

  擴展活動:

  1、請學(xué)生自行搜索因式分解的應(yīng)用實例,并在下節(jié)課上進行分享。

  2、提供更復(fù)雜的代數(shù)式讓學(xué)生進行因式分解,并進行討論和解釋。

  3、給學(xué)生類似于迷思或解謎的數(shù)學(xué)問題,讓他們運用因式分解的技巧解決問題。

  教學(xué)評估方式:

  1、在課堂上觀察學(xué)生對因式分解概念的理解程度。

  2、讓學(xué)生解決一些基本的因式分解題目,并批改他們的答案。

  3、觀察學(xué)生在團隊合作活動中的表現(xiàn)和解決問題的能力。

  結(jié)語:

  通過這份因式分解英語教案,學(xué)生能夠在實際例子和互動活動中更好地理解因式分解的概念和步驟,并學(xué)會應(yīng)用因式分解解決數(shù)學(xué)問題。這樣的教學(xué)方法將幫助學(xué)生培養(yǎng)數(shù)學(xué)思維能力和解決問題的技巧。通過互動和擴展活動,學(xué)生還能夠深入探索因式分解在數(shù)學(xué)中的更多應(yīng)用,進一步拓寬他們的知識面。

  整式的乘除與因式分解教案 4

  一、教學(xué)目標

  【知識與技能】

  了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過程與方法】

  通過對平方差特點的辨析,培養(yǎng)觀察、分析能力,訓(xùn)練對平方差公式的應(yīng)用能力。

  【情感態(tài)度價值觀】

  在逆用乘法公式的過程中,培養(yǎng)逆向思維能力,在分解因式時了解換元的思想方法。

  二、教學(xué)重難點

  【教學(xué)重點】

  運用平方差公式分解因式。

  【教學(xué)難點】

  靈活運用公式法或已經(jīng)學(xué)過的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學(xué)過程

  (一)引入新課

  我們學(xué)習(xí)了因式分解的定義,還學(xué)習(xí)了提公因式法分解因式。如果一個多項式的'各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關(guān)系,能否利用這種關(guān)系找到新的因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點?你可以得出什么結(jié)論?

  (二)探索新知

  學(xué)生獨立思考或者與同桌討論。

  引導(dǎo)學(xué)生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數(shù)或式的平方的形式。

  提問1:能否用語言以及數(shù)學(xué)公式將其特征表述出來?

  整式的乘除與因式分解教案 5

  教學(xué)目標:

  1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解 4、應(yīng)用因式分解來解決一些實際問題

  5、體驗應(yīng)用知識解決問題的樂趣

  教學(xué)重點:靈活運用因式分解解決問題

  教學(xué)難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3

  教學(xué)過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的'值

  利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點: (1).分解的對象必須是多項式.

  (2).分解的結(jié)果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓(xùn)練

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知識應(yīng)用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應(yīng)用

  1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+2004被2005整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

  整式的乘除與因式分解教案 6

  學(xué)習(xí)目標

  1、了解因式分解的意義以及它與正式乘法的關(guān)系。

  2、能確定多項式各項的公因式,會用提公因式法分解因式。

  學(xué)習(xí)重點:能用提公因式法分解因式。

  學(xué)習(xí)難點:確定因式的公因式。

  學(xué)習(xí)關(guān)鍵,在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。

  學(xué)習(xí)過程

  一.知識回顧

  1、計算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學(xué)習(xí)

  1、閱讀課文P72-73的內(nèi)容,并回答問題:

  (1)知識點一:把一個多項式化為幾個整式的__________的形式叫做____________,也叫做把這個多項式__________。

  (2)、知識點二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的_________。如果把這個_________提到括號外面,這樣

  ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種________的方法叫做________。

  2、練一練。P73練習(xí)第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是_____________,右邊是_____________。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進行:

  (1)確定公因式的數(shù)字因數(shù),當各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的'數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(________)

  (2)-4a2b+8ab-4b分解因式為__________________

  (3)分解因式4x2+12x3+4x=__________________

  (4)__________________=-2a(a-2b+3c)

  2、P73練習(xí)第2題和第3題

  五、達標測試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習(xí)題8.5第1題

  學(xué)習(xí)反思

  一、知識點

  二、易錯題

  三、你的困惑

【整式的乘除與因式分解教案】相關(guān)文章:

整式的乘除與因式分解全單元的教案范文03-23

整式的乘除和因式分解測試卷04-07

整式的乘除與因式分解同步練習(xí)選擇題03-02

八年級數(shù)學(xué)上整式的乘除與因式分解題01-07

初三數(shù)學(xué)整式及因式分解專題訓(xùn)練題05-28

整式的除法的教案05-15

《乘乘除除》教案04-04

因式分解教案范文05-26

整式教案設(shè)計范文02-09