精品国产一区二区三 , 亚洲综合五月 , 俄罗斯特级高清毛片免费 , 激情福利,久久久日本,欧美一三区,欧美黄色大片久久

教學設(shè)計

二元一次方程教學設(shè)計

時間:2025-05-23 03:47:38 教學設(shè)計 我要投稿

二元一次方程教學設(shè)計(精選10篇)

  在教學工作者開展教學活動前,時常需要用到教學設(shè)計,教學設(shè)計是連接基礎(chǔ)理論與實踐的橋梁,對于教學理論與實踐的緊密結(jié)合具有溝通作用。教學設(shè)計要怎么寫呢?下面是小編整理的二元一次方程教學設(shè)計(精選10篇),歡迎閱讀與收藏。

二元一次方程教學設(shè)計(精選10篇)

  二元一次方程教學設(shè)計 篇1

  一、教學目標

  1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是二元一次方程;

  2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。

  過程與方法目標:經(jīng)歷觀察、比較、猜想、驗證等數(shù)學學習活動,培養(yǎng)分析問題的能力和數(shù)學說理能力;

  情感與態(tài)度目標

  1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養(yǎng)運用類比轉(zhuǎn)化的思想解決問題的能力;

  2、通過對實際問題的分析,培養(yǎng)關(guān)注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)良好的數(shù)學應(yīng)用意識。

  二、重點、難點

  重點:二元一次方程的概念及二元一次方程的解的概念。

  難點

  1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個,但不是任意的兩個數(shù)是它的解。

  2、把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。

  三、教學方法與教學手段

  1、 通過創(chuàng)設(shè)問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

  2、 通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

  3、 通過學練結(jié)合,以游戲的形式讓學生及時鞏固所學知識。

  四、教學過程

  創(chuàng)設(shè)情境 導入新課

  1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?

  2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?

  思考:這個問題中,有幾個未知數(shù)?能列一元一次方程求解嗎?如果設(shè)黃卡取x張,藍卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車行駛2時的'路程比一輛卡車行駛3時的路程還多20千米。如果設(shè)轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?

  師生互動 探索新知

  1、 發(fā)現(xiàn)新知

  引導學生觀察所列的方程: 這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)名字嗎?

  根據(jù)它們的共同特征,你認為怎樣的方程叫做二元一次方程? (二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)

  2、 鞏固新知

  判斷下列各式是不是二元一次方程(1) (2) (3) (4)

  五、 總結(jié)

  比較一元一次方程和二元一次方程的相同點和不同點

  相同點: 方程兩邊都是整式,含有未知數(shù)的項的次數(shù)都是一次。

  如果一個方程含有兩個未知數(shù),并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。

  二元一次方程教學設(shè)計 篇2

  學習目標:

  1. 使學生初步理解二元一次方程與一次函數(shù)的關(guān)系

  2. 能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值

  3. 能解二元一次方程組的方法求兩條直線的交點坐標

  學習重點:

  1. 用作圖像法求二元一次方程組的近似值

  2. 用解二元一次方程組的方法求兩條直線的交點坐標

  學習難點:

  1. 做圖像時要標準、精確,近似值才接近

  2. 解二元一次方程組時計算準確,方法適宜

  學習方法:

  先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

  自主學習部分:

  問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

 。2)在直角坐標系中分別描出以上這些解為坐標的點,它們在一次函數(shù)y=5-x的圖像上嗎?

  (3)在一次函數(shù)y=5-x的`圖像上任取一點,它們的坐標適合方程x+y=5嗎?

 。4)以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=5-x的圖像相同嗎?

 。5)由以上的探究過程,你發(fā)現(xiàn)了什么?

  問題2.

 。1)在同一個直角坐標系內(nèi)分別作出一次函數(shù)y=5-x和y=2x-1的圖像,這兩個圖像有交點嗎?如果有,寫出交點坐標?

  (2)一次函數(shù)y=5-x和y=2x-1的交點坐標與方程 組 的解有什么關(guān)系?你能說明理由嗎?

 。3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用 法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。

  合作探究:

  1、 用做圖像的方法解方程組

  2、用解方程的方法求直線y=4-2x與直線y=2x-12交點

  二元一次方程教學設(shè)計 篇3

  教學目標

  知識目標:了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

  能力目標:通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。

  情感目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的`有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應(yīng)用意識。

  教學重點

  二元一次方程組的含義

  教學難點

  判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的數(shù)學應(yīng)用意識。

  教學過程

  一、引入、實物投影

  1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:累死我了,小馬說:你還累,這么大的個,才比我多馱2個老牛氣不過地說:哼,我從你背上拿來一個,我的包裹就是你的2倍!,小馬天真而不信地說:真的?!同學們,你們能否用數(shù)學知識幫助小馬解決問題呢?

  2、請每個學習小組討論(討論2分鐘,然后發(fā)言)

  這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程:x+1=2(y-1)

  師:同學們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的項的次數(shù)是多少? (含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)

  師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程教學設(shè)計 篇4

  一、教材分析

  本課內(nèi)容是在學生掌握了二元一次方程組有關(guān)概念之后的學習內(nèi)容,用代入消元法解二元一次方程組是學生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學習本章的重點和難點。學完以后可以幫助我們解決一些實際的問題,也是為了今后學習函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

  二、教學目標

  1.使學生學會用代入消元法解二元一次方程組。

  2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會化歸思想。

  三、教學重難點

  1.重點:用代入法解二元一次方程組。

  2.難點:在“消元”的過程中能夠判斷消去哪個未知數(shù),使得解方程組的運算轉(zhuǎn)為較簡便的過程。

  四、教學過程

 。1)復習引入

  在上節(jié)課中我們學習了二院一次方程組的有關(guān)概念,并學習了二元一次方程組的概念還學會判斷一組值是否是二元一次方程組的解的問題,同學們還記得二元一次方程組和二元一次方程組的解的概念嗎?追問二元一次方程組既然有解那么它們的解又怎么求呢?

  設(shè)計意圖:讓學生復習鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個拋磚引玉的效果,激起學生的學習興趣,引出課題。

 。2)探究新知

  此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點擊暫停,先讓學生考慮想清楚兩個問題。

  一個問題是為什么能用一元一次方程解決的實際問題我們要用二元一次方程組來解決?第二個問題觀察二元一次方程組和一元一次方程組之間有何異同?學生想清楚這兩個問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學生知道二元一次方程組完整的'解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

  播放視頻完后先讓學生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導總結(jié)。接著完成配套的3個習題,強化訓練。

  (3)例題講解

  讓學生嘗試解答

  設(shè)計意圖:讓學生通過例1和例2的對比,引出如何選擇變化有利于計算的問題。

  預想大部分學生例2會存在這樣的問題到底選擇哪個方程變形,當學生做出例1,猶豫例2時,提出這樣兩個問題:

 。1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當如何變形?把一個方程變形為用含x的式子表示y(或含y的式子表示x)

  (2)選擇哪個方程變形比較簡便呢?

  再一次激起學生的學習興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個方程,選擇那一個未知數(shù)變形能簡便的進行運算。

  五、課堂小結(jié)

  1.這節(jié)課你學到了哪些知識和方法?

  2.你還有什么問題或想法需要和大家交流分享?

  二元一次方程教學設(shè)計 篇5

  一、教學目標

 。ㄒ唬┙虒W知識點

  1、代入消元法解二元一次方程組。

  2、解二元一次方程組時的消元思想,化未知為已知的化歸思想。

 。ǘ┠芰τ柧氁

  1、會用代入消元法解二元一次方程組。

  2、了解解二元一次方程組的消元思想,初步體會數(shù)學研究中化未知為已知的化歸思想。

 。ㄈ┣楦信c價值觀要求

  1、在學生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復雜問題為簡單問題的化歸思想中,享受學習數(shù)學的樂趣,提高學習數(shù)學的信心。

  2、培養(yǎng)學生合作交流,自主探索的良好習慣。

  二、教學重點

  1、會用代入消元法解二元一次方程組。

  2、了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學研究中化未知為已知的化歸思想。

  三、教學難點

  1、消元的思想。

  2、化未知為已知的化歸思想。

  四、教學方法

  啟發(fā)自主探索相結(jié)合。

  教師引導學生回憶一元一次方程解決實際問題的方法并從中啟發(fā)學生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程。二元一次方程便可獲解,從而通過學生自主探索總結(jié)用代入消元法解二元一次方程組的步驟。

  五、教具準備

  投影片兩張:

  第一張:例題(記作7。2 A);

  第二張:問題串(記作7。2 B)。

  六、教學過程

 、、提出疑問,引入新課

  [師生共憶]上節(jié)課我們討論過一個希望工程義演的問題;沒去觀看義演的成人有x個,兒童有y個,我們得到了方程組 成人和兒童到底去了多少人呢?

  [生]在上一節(jié)課的做一做中,我們通過檢驗 是不是方程x+y=8和方程5x+3y=34,得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解。所以成人和兒童分別去了5個人和3個人。

  [師]但是,這個解是試出來的.。我們知道二元一次方程的解有無數(shù)個。難道我們每個方程組的解都去這樣試?

  [生]太麻煩啦。

  [生]不可能。

  [師]這就需要我們學習二元一次方程組的解法。

 、颉⒅v授新課

  [師]在七年級第一學期我們學過一元一次方程,也曾碰到過希望工程義演問題,當時是如何解的呢?

  [生]解:設(shè)成人去了x個,兒童去了(8—x)個,根據(jù)題意,得:

  5x+3(8—x)=34

  解得x=5

  將x=5代入8—x=8—5=3

  答:成人去了5個,兒童去了3個。

  [師]同學們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?

  [生]列二元一次方程組設(shè)出有兩個未知數(shù)成人去了x個,兒童去了y個。列一元一次方程設(shè)成人去了x個,兒童去了(8—x)個。y應(yīng)該等于(8—x)。而由二元一次方程組的一個方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8—x。

  [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8—x)=34與方程組中的第二個方程5x+3y=34相比較,把5x+3y=34中的y用8—x代替就轉(zhuǎn)化成了一元一次方程。

  [師]太好了。我們發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識轉(zhuǎn)化為舊知識便可。如何轉(zhuǎn)化呢?

  [生]上一節(jié)課我們就已知道方程組的兩個未知數(shù)所包含的意義是相同的。所以將 中的①變形,得y=8—x ③我們把y=8—x代入方程②,即將②中的y用8—x代替,這樣就有5x+3(8—x)=34。二元化成一元。

  二元一次方程教學設(shè)計 篇6

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美。本節(jié)課是學生學習完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關(guān)系的探究,學生在探索過程中體驗數(shù)形結(jié)合的思想方法和數(shù)學模型的應(yīng)用價值,這對今后的學習有著十分重要的意義。

  2、教學重難點

  重點:一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。

  3、教學目標

  知識技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會用圖象法解二元一次方程組。

  數(shù)學思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實際問題的解決過程,學會用函數(shù)的觀點去認識問題。

  解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實際問題。

  情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。

  二、教法說明

  對于認知主體——學生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構(gòu)建新的認知結(jié)構(gòu),促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。

  三、教學過程

 。ㄒ唬└兄磉厰(shù)學

  學生已經(jīng)學習過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設(shè)計意圖]建構(gòu)主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設(shè)情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的.規(guī)范性。

  動畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學生活動:尋找矩形性質(zhì)。]

  動畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學生活動;尋找菱形性質(zhì)。]

  動畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時提出問題,引導學生進行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形。”

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  (二)享受探究樂趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  [設(shè)計意圖]用一連串的問題引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關(guān)系,為探索二元一次方程組的解與直線交點坐標的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

  [設(shè)計意圖]學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關(guān)注學生的情感體驗。

 。ㄈ┏俗腔劭燔

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費方式:方式A以每分0.1元的價格按上網(wǎng)時間計費;方式B除收月基費20元外再以每分0.05元的價格按上網(wǎng)時間計費。如何選擇收費方式能使上網(wǎng)者更合算?

  [設(shè)計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數(shù)形結(jié)合這一思想方法的應(yīng)用。

 。ㄋ模w驗成功喜悅

  1、搶答題

  2、旅游問題

  [設(shè)計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應(yīng)用數(shù)學的意識,更好地促進學生對本節(jié)課難點的理解和應(yīng)用,幫助學生不斷完善新的認知結(jié)構(gòu)。

  (五)分享你我收獲

  在課堂臨近尾聲時,向?qū)W生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?

  [設(shè)計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。

 。╅_拓嶄新天地

  1、數(shù)學日記

  2、布置作業(yè)

  [設(shè)計意圖]新課程強調(diào)發(fā)展學生數(shù)學交流的能力,用數(shù)學日記給學生提供一種表達數(shù)學思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學生嘗試用數(shù)學的眼睛觀察事物,體驗數(shù)學的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學,讓“不同的人在數(shù)學上得到不同的發(fā)展”。

  四、教學設(shè)計反思

  1、貫穿一個原則——以學生為主體的原則

  2、突出一個思想——數(shù)形結(jié)合的思想

  3、體現(xiàn)一個價值——數(shù)學建模的價值

  4、滲透一個意識——應(yīng)用數(shù)學的意識

  二元一次方程教學設(shè)計 篇7

  教學目標

  1.使學生會用代入消元法解二元一次方程組;

  2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

  3.在本節(jié)課的教學過程中,逐步滲透樸素的辯證唯物主義思想。

  教學重點和難點

  重點:用代入法解二元一次方程組。

  難點:代入消元法的基本思想。

  課堂教學過程設(shè)計

  一、從學生原有的認知結(jié)構(gòu)提出問題

  1.誰能造一個二元一次方程組?為什么你造的方程組是二元一次方程組?

  2.誰能知道上述方程組(指學生提出的方程組)的解是什么?什么叫二元一次方程組的解?

  3.上節(jié)課我們提出了雞兔同籠問題:(投影)一個農(nóng)民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各有多少?設(shè)農(nóng)民有x只雞,y只兔,則得到二元一次方程組

  對于列出的這個二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學生思考)教師引導并提出問題:若設(shè)有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問題得解。

  問題:從上面一元一次方程解法過程中,你能得出二元一次方程組串問題,進一步引導學生找出它的解法)

  (1)在一元一次方程解法中,列方程時所用的等量關(guān)系是什么?

  (2)該等量關(guān)系中,雞數(shù)與兔子數(shù)的表達式分別含有幾個未知數(shù)?

  (3)前述方程組中方程②所表示的等量關(guān)系與用一元一次方程表示的等量關(guān)系是否相同?

  (4)能否由方程組中的方程②求解該問題呢?

  (5)怎樣使方程②中含有的兩個未知數(shù)變?yōu)橹缓幸粋未知數(shù)呢?(以上問題,要求學生獨立思考,想出消元的方法)結(jié)合學生的回答,教師作出講解。

  由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的.y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30。

  將x=30代入方程③,得y=20。

  即雞有30只,兔有20只。

  本節(jié)課,我們來學習二元一次方程組的解法。

  二、講授新課例1解方程組

  分析:若此方程組有解,則這兩個方程中同一個未知數(shù)就應(yīng)取相同的值。因此,方程②中的y就可用方程①中的表示y的代數(shù)式來代替。解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3。把x=3代入①,得y=-2。

  (本題應(yīng)以教師講解為主,并板書,同時教師在最后應(yīng)提醒學生,與解一元一次方程一樣,要判斷運算的結(jié)果是否正確,需檢驗。其方法是將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是否相等。檢驗可以口算,也可以在草稿紙上驗算)教師講解完例1后,結(jié)合板書,就本題解法及步驟提出以下問題:

  1.方程①代入哪一個方程?其目的是什么?

  2.為什么能代入?

  3.只求出一個未知數(shù)的值,方程組解完了嗎?

  4.把已求出的未知數(shù)的值,代入哪個方程來求另一個未知數(shù)的值較簡便?在學生回答完上述問題的基礎(chǔ)上,教師指出:這種通過代入消去一個未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡稱代入法。例2解方程組

  分析:例1是用y=1-x直接代入②的。例2的兩個方程都不具備這樣的條件(即用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)),所以不能直接代入。為此,我們需要想辦法創(chuàng)造條件,把一個方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x)。那么選用哪個方程變形較簡便呢?通過觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解。解:由②,得x=8-3y,③把③代入①,得(問:能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37。

  (問:本題解完了嗎?把y=37代入哪個方程求x較簡單?)把y=37代入③,得x= 8-3×37,所以x=-103。

  (本題可由一名學生口述,教師板書完成)

  三、課堂練習(投影)用代入法解下列方程組:

  四、師生共同小結(jié)

  在與學生共同回顧了本節(jié)課所學內(nèi)容的基礎(chǔ)上,教師著重指出,因為方程組在有解的前提下,兩個方程中同一個未知數(shù)所表示的是同一個數(shù)值,故可以用它的等量代換,即使“代入”成為可能。而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問題最終得到解決。

  二元一次方程教學設(shè)計 篇8

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  代入消元法解二元一次方程組

  2.內(nèi)容解析

  二元一次方程組是解決含有兩個提供運算未知數(shù) 的問題的有力工具,也是解決后續(xù)一些數(shù)學問題的基礎(chǔ)。其解法將為解決這些問題的工具。如用待定系數(shù)法求一次函數(shù)解析式,在平面直角坐標系中求兩直線交點坐標等。

  解二元一次方程組就是要把二元化為一元。而化歸的方法就是代入消元法,這一方法同樣是解三元一次方程組的基本思路,是通法;瘹w思想在本節(jié)中有很好的體現(xiàn)。

  本節(jié)課的教學重點是:會用代入消元法解一些簡單的二元一次方程組,體會解二元一次方程組的思路是消元.。

  二、目標和目標解析

  1.教學目標

  (1)會用代入消元法解一些簡單的二元一次方程組

  (2)理解解二元一次方程組的思路是消元,體會化歸思想

  2.教學目標解析

  (1)學生能掌握代入消元法解一些簡單的二元一次方程組的一般步驟,并能正確求出簡單的二元一次方程組的解,

  (2)要讓學生經(jīng)歷探究的過程。體會二元一次方程組的解法與一元一次方程的解法的關(guān)系,進一步體會消元思想和化歸思想

  三、教學問題診斷分析

  1.學生第一次遇到二元問題,為什么要向一元轉(zhuǎn)化,如何進行轉(zhuǎn)化。需要結(jié)合實際問題進行分析。由于方程組的兩個方程中同一個未知數(shù)表示的是同一數(shù)量,通過觀察對照,可以發(fā)現(xiàn)二元一次方程組向 一元一次方程轉(zhuǎn)化的思路

  2.解二元一次方程組的步驟多,每一步需要理解每一步的目的和依據(jù),正確進行操作,把探究過程分解細化,逐一實施。

  本節(jié)教學難點理:把二元向一元的轉(zhuǎn)化,掌握代入消元法解二元一次方程組的'一般步驟。

  四、教學過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題1

  籃球聯(lián)賽中,每場都要分出勝負,每隊勝1場得2分,負1場得1分,某隊10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?你能用一元一次方程解決這個問題嗎?

  師生活動:學生回答:能。設(shè)勝x場,負(10-x)場。根據(jù)題意,得2x+(10-x)=16

  x=6,則勝6場,負4場

  教師追問:你能根據(jù)問題中的等量關(guān)系列出二元一次方程組嗎?

  師生活動:學生回答:能設(shè)勝x場,負y場。根據(jù)題意,得

  我們在上節(jié)課,通過列表找公共解的方法得到了這個方程組的解,x=6,y=4。顯然這樣的方法需要一個個嘗試,有些麻煩,能不能像解一元一次方程那樣來求出方程組的解呢?

  這節(jié)課我們就來探究如何解二元一次方程組。

  設(shè)計意圖:用引言的問題引人本節(jié)課內(nèi)容,先列一元一次方程解決這個問題,再二元一次方程組,為后面教學做好了鋪墊.

  問題2 對比方程和方程組,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

  師生活動:通過對實際問題的分析,認識方程組中的兩個y都是這個隊的負場數(shù),由此可以由一個方程得到y(tǒng)的表達式,并把它代入另一個方程,變二元為一元,把陌生知識轉(zhuǎn)化為熟悉的知識。

  師生活動:根據(jù)上面分析,你們會解這個方程組了嗎?

  學生回答:會。

  由①,得y=10-x ③

  把③代入②,得2x+(10-x)=16 x=6

  設(shè)計意圖:共同探究,體會消元的過程。

  問題3 教師追問:你能把③代入①嗎?試一試?

  師生活動:學生回答:不能,通過嘗試,x抵消了。

  設(shè)計意圖:由于方程③是由方程①,得來的,它不能又代回到它本身。讓學生實際操作,得到體驗,更好地認識這一點.

  教師追問:你能求y的值嗎?

  師生活動:學生回答:把x=6代入③得y=4

  教師追問:還能代入別的方程嗎?

  學生回答:能,但是沒有代入③簡便

  教師追問:你能寫出這個方程組的解,并給出問題的答案嗎?

  學生回答:x=6,y=4,這個隊勝6場,負4場

  設(shè)計意圖:讓學生考慮求另一個未知數(shù)的過程,并如何優(yōu)化解法。

  師生活動:先讓學生獨立思考,再追問在這種解法中,哪一步最關(guān)鍵?為什么?

  學生回答:代入這一步

  教師總結(jié):這種方法叫代入消元法。

  教師追問:你能先消x嗎?

  學生紛紛動手完成。

  設(shè)計意圖:讓學生嘗試不同的代入消元法,為后面學習選擇簡單的代入方法做鋪墊。

  2. 應(yīng)用新知,拓展思維

  例 用代入法解二元一次方程組

  師生活動,把學生分兩組,一組先消x, 一組先消y,然后每組各派一名代表上黑板完成。

  設(shè)計意圖:借助本題,充分發(fā)揮學生的合作探究精神,通過比較,讓學生自主認識代入消元法,并學會優(yōu)選解法。

  3.加深認識,鞏固提高

  練習 用代入法解二元一次方程組

  設(shè)計意圖:提醒并指導學生要先分析方程組的結(jié)構(gòu)特征,學會優(yōu)選解法。在練習的基礎(chǔ)上熟練用代入消元法解二元一次方程組。

  4.歸納總結(jié),知識升華

  師生活動,共同回顧本節(jié)課的學習過程,并回答以下問題

  1. 代入消元法解二元一次方程組有哪些步驟?

  2. 解二元一次方程組的基本思路是什么?

  3.在探究解法的過程中用到了哪些思想方法?

  4.你還有哪些收獲?

  設(shè)計意圖:通過這一活動的設(shè)計,提高學生對所學知識的遷移能力和應(yīng)用意識;培養(yǎng)學生自我歸納概括的能力。

  5. 布置作業(yè)

  教科書第93頁第2題

  五、目標檢測設(shè)計

  用代入法解下列二元一次方程組

  設(shè)計意圖:考查學生對代入法解二元一次方程組的掌握情況。

  二元一次方程教學設(shè)計 篇9

  教學目標:

  1.會用加減消元法解二元一次方程組。

  2.能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組。

  3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的.“轉(zhuǎn)化”的思想方法。

  教學重點:

  加減消元法的理解與掌握

  教學難點:

  加減消元法的靈活運用

  教學方法:

  引導探索法,學生討論交流

  教學過程:

  一、情境創(chuàng)設(shè)

  買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?

  設(shè)蘋果汁、橙汁單價為x元,y元。

  我們可以列出方程3x+2y=23

  5x+2y=33

  問:如何解這個方程組?

  二、探索活動

  活動一:

  1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

  2、這些方法與代入消元法有何異同?

  3、這個方程組有何特點?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解這個方程得:y=4

  把y=4代入③式

  則

  所以原方程組的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解這個方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解這個方程得y=4

  所以原方程組的解是x=5

  y=4

  把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(eliminationbyadditionorsubtraction),簡稱加減法。

  三、例題教學:

  例1.解方程組x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  將代入①,得

  解這個方程得:

  所以原方程組的解是

  鞏固練習(一):練一練1

  .(1)

  例2.解方程組5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

 、凇3,得

  4x-6y=-10④

 、邸,得:

  11x=22

  解這個方程得x=2

  將x=2代入①,得

  5×2-2y=4

  解這個方程得:y=3

  所以原方程組的解是x=2

  y=3

  四、思維拓展:

  解方程組:

  五、小結(jié):

  1、掌握加減消元法解二元一次方程組

  2、靈活選用代入消元法和加減消元法解二元一次方程組

  二元一次方程教學設(shè)計 篇10

  教學目標

  知識與技能

  (1)初步理解二元一次方程和一次函數(shù)的關(guān)系;

  (2)掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;

  (3)掌握二元一次方程組的圖像解法。

  過程與方法

  (1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法;

  (2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結(jié)合的意識和能力。

  情感與態(tài)度

  (1)在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。

  (2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。

  教學重點

  (1)二元一次方程和一次函數(shù)的關(guān)系;

  (2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系。

  教學難點

  數(shù)形結(jié)合和數(shù)學轉(zhuǎn)化的思想意識。

  教學準備

  教具:多媒體課件、三角板。

  學具:鉛筆、直尺、練習本、坐標紙。

  教學過程

  第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)

  內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?

  2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

  3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

  4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

  由此得到本節(jié)課的第一個知識點:

  二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

  (1)以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;

  (2)一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程。

  第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導學生解決)

  內(nèi)容:

  1.解方程組

  2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。

  3.方程組的解和這兩個函數(shù)的圖像的交點坐標有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的.兩條直線的關(guān)系以及二元一次方程組的圖像解法;

  (1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;

  (2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解。

  (3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

【二元一次方程教學設(shè)計】相關(guān)文章:

二元一次方程教學設(shè)計12-13

二元一次方程組教學設(shè)計06-12

二元一次方程組教學設(shè)計07-07

二元一次方程教學設(shè)計教案(精選12篇)03-02

二元一次方程組教學設(shè)計(通用10篇)04-13

二元一次方程組的圖象解法教案設(shè)計05-17

二元一次方程教案(精選7篇)05-13

二元一次方程教案(精選8篇)05-02

二元一次方程組及其應(yīng)用教學總結(jié)范文03-29