精品国产一区二区三 , 亚洲综合五月 , 俄罗斯特级高清毛片免费 , 激情福利,久久久日本,欧美一三区,欧美黄色大片久久

教學設(shè)計

函數(shù)的數(shù)學教學設(shè)計

時間:2025-04-30 08:20:32 教學設(shè)計 我要投稿

函數(shù)的數(shù)學教學設(shè)計

  教學目標:

函數(shù)的數(shù)學教學設(shè)計

  1、進一步理解函數(shù)的概念,能從簡單的實際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

  2、使學生分清常量與變量,并能確定自變量的取值范圍.

  3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應(yīng)關(guān)系.

  4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.

  5、通過函數(shù)的教學使學生體會到事物是相互聯(lián)系的.是有規(guī)律地運動變化著的.

  教學重點:了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值.

  教學難點:函數(shù)概念的抽象性.

  教學過程:

  (一)引入新課:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).

  生活中有很多實例反映了函數(shù)關(guān)系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?

  1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數(shù)n(個)的關(guān)系.

  2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.

  解:1、y=30n

  y是函數(shù),n是自變量

  2、 ,n是函數(shù),a是自變量.

  (二)講授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學式子即解析式表示的.這種用數(shù)學式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數(shù)n必須是正整數(shù).

  例1、求下列函數(shù)中自變量x的取值范圍.

  (1) (2)

  (3) (4)

  (5) (6)

  分析:在(1)、(2)中,x取任意實數(shù), 與 都有意義.

  (3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .

  同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .

  第(5)小題, 是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零. 的被開方數(shù)是 .

  同理,第(6)小題 也是二次根式, 是被開方數(shù),

  解:(1)全體實數(shù)

  (2)全體實數(shù)

  (3)

  (4) 且

  (5)

  (6)

  小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實數(shù);函數(shù)的解析式是分式時,自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.

  注意:有些同學沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設(shè)計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.

  但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用或者聯(lián)接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯(lián)系日常生活講清且與或.說明這里 與 是并且的關(guān)系.即2與-1這兩個值x都不能取.

  例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

  (1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;

  (2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數(shù)的范圍.

  解:(1)

  (x是正整數(shù),

  (2)若變速車的輛次不小于25%,但不大于40%,

  則

  收入在1225元至1330元之間

  總結(jié):對于反映實際問題的函數(shù)關(guān)系,應(yīng)使得實際問題有意義.這樣,就要求聯(lián)系實際,具體問題具體分析.

  對于函數(shù)

  當自變量 時,相應(yīng)的函數(shù)y的值是 .60叫做這個函數(shù)當 時的函數(shù)值.

  例3、求下列函數(shù)當 時的函數(shù)值:

  (1) (2)

  (3) (4)

  解:1)當 時,

  (2)當 時,

  (3)當 時,

  (4)當 時,

  注:本例既鍛煉了學生的計算能力,又創(chuàng)設(shè)了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應(yīng).以此加深對函數(shù)的理解.

  (二)小結(jié):

  這節(jié)課,我們進一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對于反映實際問題的函數(shù)關(guān)系,要具體問題具體分析.

  作業(yè):習題13.2A組2、3、5

【函數(shù)的數(shù)學教學設(shè)計】相關(guān)文章:

數(shù)學函數(shù)教學設(shè)計02-10

函數(shù)的應(yīng)用數(shù)學教學設(shè)計05-11

函數(shù)的教學設(shè)計05-21

數(shù)學三角函數(shù)教學設(shè)計06-22

變量與函數(shù)的教學設(shè)計06-08

冪函數(shù)教學設(shè)計06-18

高一數(shù)學教學設(shè)計 :《對數(shù)函數(shù)》02-02

excel函數(shù)的教學設(shè)計范文05-19

高中函數(shù)概念教學設(shè)計02-18